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Directed random walks in continuous space
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The investigation on diffusion with directed motion in a two-dimensional continuous space is completed by
using the model of the continuous directed random walks. The average square end-to-end distance^R2(t)&
;t2n is calculated. The results show that this type of walks belongs asymptotically to the same class (n
51.0) as the ballistic motions. For short time, we observe a crossover from purely random walks (n50.5) to
ballistic motions (n51.0). The dependence of the crossover on the direction parameteru is studied. There
exists a scaling relation of the form̂R2(t)&;t f (t/u22). The return probabilityP00(t) is also investigated and
the scaling form similar tôR2(t)& is obtained.
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In the past few decades, based on simple Brownian
tion, various models of random walks~RW! with memory or
interaction have been studied in order to account for dist
features of physical, chemical, and biological system
whose complexity goes beyond what can be obtained f
the simple random walk picture@1–8#. The standard RW
with isotropic diffusion, is a powerful tool for studying sev
eral physical processes such as diffusion, transportation@9#,
aggregation, structure formation@10,11#, and diffusion con-
trolled reactions@12#.

Recently, the RW with anisotropy have extensively
tracted a great deal of attention@13–15#. This type of aniso-
tropic systems is very common in nature, such as the po
reservoir rocks@16#, the epoxy-graphite disk composite
@17#, etc. The directed polymers have also been investiga
@18,19# because of their versatile applications ranging fro
growing interface to spin glasses and to flux lines in highTc

superconductors@20#. The directed self-avoiding walk mode
in lattice space has been used for studying directed polym
@21,22#. Because the model introduces a global bias in g
metrical models it leads to novel anisotropic critical behav
@14#. Asymptotically, it is found for the two-dimensional cas
that the displacementŝRiN&;^RN

2 &1/2;N and ^R'N
2 &1/2

;N1/2, whereN is the number of steps in the walk, andi and
' refer to projections of the displacement parallel and p
pendicular to the preferred axis of the walk, respectiv
@14#. The biased diffusion in anisotropic disordered syste
has been investigated, which mimics a particle moving on
anisotropic amorphous material@23#. It shows a transition
from pure to drift diffusion when the bias reaches a thre
old.

Previous RW with anisotropy have been studied on re
lar or fractal discrete lattices@13–15,18,20–23#. The walker
has only several discrete moving directions. In fact,
walking space is not discrete and is continuous. In this pa
we present a continuous-space directed random w
~CDRW! model in order to extend these anisotropic motio
in discrete space to continuous space. For the present m
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the walker can perform any number of time steps or w
any distance of length. Therefore, no finite-size effects e
in the simulations.

In the CDRW model the walker moves on a continuo
plane and has a preferential direction (1x axis here!. The
moving direction of the walker can be determined as follow
The direction parameter is introduced via an angleu. First
we draw the extension against the preferential direction. T
extension is considered to be the dichotomy of the new an
u, i.e., an angle ofu/2 is formed above the extension, an
u/2 below it. Then, we make the supplementary angleg
(52p2u) of u, and take a random direction in thisg angle
as the moving direction of the walker for the next step. Su
a schematic diagram is shown in Fig. 1, whereg590° and
u5270°. It is obvious that asuÞ0 the motion of the walker
is anisotropic. The larger theu is, the stronger is the anisot
ropy of motion.

Monte Carlo~MC! simulations have been used to stu
the movement of the walker. In the simulations the reduc
units were used. The MC step is taken as the time unit,
the walker moves a unit length for each step. To investig
the effect of direction parameter on the motion of the walk
the average square end-to-end distance^R2(t)& is calculated
for a series ofu values in the interval@0°,360°#. It is ex-
pected that this quantity scales with timet as

^R2~ t !&;t2n, ~1!

d-

FIG. 1. A pictorial of directed motion in two-dimensional con
tinuous space. The preferential direction is chosen as thex axis.
Draw the extension against the preferential direction~dashed line!
before each step. To regard the extension as the dichotomy form
angleu. Then make its supplementary angleg by the relationship
g52p2u. Take a random direction insideg angle as the walking
direction.
©2002 The American Physical Society05-1
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where ^•••& is the average over independent walk realiz
tions. To reduce the effect of the fluctuation on calcula
results, at least 1000 independent realizations were
formed for eachu.

Figure 2 shows thêR2(t)& as a function oft with u
ranging from 1° to 360°. It can be seen that whenu5360°,
the movement of the walker corresponds to the ballistic m
tion, and thê R2&-t relation can be described by a straig
line with a slope of 2.0, as expected. It is also noted t
when u50 the present motion reduces to purely RW w
2n51.0. When 0°,u,360°, a crossover appears and the
exists a crossover timetc . As t!tc , the slopes of curves ar
approximately equal to 1.0, and ast@tc , the curves all bend
toward the slope of 2.0. This asymptotic behavior is in agr
ment with the results for lattices@15,21,23#:

^R2~ t !&5At2 t→`. ~2!

It shows that as the timet approaches infinity, the averag
square end-to-end distance is proportional tot2 with a pro-
portional constantA. Therefore, the CDRW belongs to th
same university class as the simple ballistic motion. The
rection factorA and the crossover timetc are related to the
direction angleu. From Fig. 2 we can obtain the values ofA
and tc for eachu. Figure 3 shows the plots ofA and tc as a
function of u.

Figures 2 and 3 can be explained as follows. We reg
the CDRW as the motion in an invariant external field, whi
provides a preferential direction for the walker. Let the
rection of the external field parallel tox axis. The field
strengthB, being 0<B<1, can be given by the step prob
abilities in x direction as

B5px12px2 , ~3!

wherepx1 andpx2 are the transition probabilities moving t
positive and negativex directions, respectively. Thus, th
displacement of the walkerdrW in a step can be expressed b

FIG. 2. The average square end-to-end distance^R2(t)& as a
function of time t for several u values. From left to rightu
5360°, 100°, 50°, 20°, 10°, 5°, 2°, and 1°. The symbols are
simulation results and the lines are the plots of the analytic exp
sion Eq.~8!.
05210
-
d
r-

-

t

e

-

i-

rd

-

drW5dxW1dyW5cosf1sinf, ~4!

wheref is the angle between the moving direction of t
walker and preferential direction. Therefore, the transit
probabilities can be expressed in terms off as

px15^cosf&ucosf.0 ~5a!

and

px252^cosf&ucosf,0 , ~5b!

^•••& means the averaging over all possible moving dir
tions, and the subscript expressions represent the limi
conditions. Combining Eqs.~3! and ~5!, the field strengthB
can be expressed as

B5^cosf&. ~6!

Calculating^cosf& in the range off from 2(2p2u)/2 to
(2p2u)/2, we obtain̂ cosf&5sin(u/2)/(p2u/2). Combin-
ing this relation with Eq.~6! we get

B5
sin~u/2!

p2u/2
. ~7!

It can be seen from Eq.~7! that asu50, the field strength
B50 and the model reduces to purely RW; asu5360°, the
field has the largest strengthB51 and the model corre
sponds to the ballistic motion. By using stochastic metho
the analytic expression of^R2& as functions oft andB can be
obtained as follows@24#:

^R2~ t !&5~12B2!t1B2t2. ~8!

Combining Eqs.~7! and ~8!, we can calculate the time evo
lution of ^R2& for given u values. These calculated resul
are also shown in Fig. 2. As shown in the figure, the sim
lation results are very good in agreement with the theoret
values of Eq.~8!.

When the timet→`, Eq. ~8! becomes

e
s-

FIG. 3. The proportional constantA (h) and crossover timetc

(s) as a function of the direction angleu. The symbols are the
simulation results. The solid and dashed lines are the plots of
~10! and ~12!, respectively.
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BRIEF REPORTS PHYSICAL REVIEW E 65 052105
^R2~ t !&5B2t2. ~9!

It is just the case of ballistic motion. Combining Eqs.~2!, ~7!,
and ~9!, we obtain

A5S sin~u/2!

p2u/2 D 2

. ~10!

The theoretical results ofA from Eq. ~10! are plotted in Fig.
3. It is evident that the simulation results ofA are in good
agreement with the prediction of Eq.~10!.

According to Eq.~8!, one can also find that as the fie
strengthB!1 (u is very small!, the coefficients (12B2)
@B2. For short time the linear term (12B2)t controls the
dynamics of CDRW comparing with the quadratic oneB2t2,
and the curves have the slopes of 2n51.0. While the time
t→`, the quadratic termB2t2 is dominant, and the curve
have the slopes of 2n52.0 for all u values, as expected~see
Fig. 2!. As these two terms are comparable to each other,
crossover occurs. Therefore, one can estimate the cross
time tc by taking (12B2)tc.B2tc

2 , i.e.,

tc5
12B2

B2
. ~11!

Substituting Eq.~7! into Eq. ~11!, the cross-over timetc can
be expressed in terms ofu as

tc5
~p2u/2!22sin2~u/2!

sin2~u/2!
. ~12!

The calculatedtc-u relation is drawn in Fig. 3. This figure
shows that the simulation result oftc is in excellent agree-
ment with the analytic values of Eq.~12! in the whole range
of u.

Going a step further, to understand the crossover beha
of ^R2(t)& we suggest the following scaling approach. A
seen from above, the scaling behaviors of CDRW show
phase transition at the critical pointuc50. As u5uc the
CDRW belongs to the purely RW class, and asu.uc the

FIG. 4. Scaling plots of the average square end-to-end dista
^R2(t)&. The data are quoted from Fig. 2. The scaling expone
nc51/2 anda522.
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CDRW falls into the same universality class as the ballis
motion. Guided by Fig. 2, it is expected that there exists
scaling relation of the form

^R2~ t !&;t2ncf ~ t/tc!, ~13a!

where

tc;~u2uc!
a, ~13b!

and nc is the so-called critical exponent witĥR2(t)&;t2nc

for u5uc @8#. It is easy to obtain the critical exponentnc
50.5. The exponenta has to be determined numerically. A
tc is the only relevant time scale, the scaling functions brid
the short time and the long time regime. To match both
gimes, the scaling functionf (x) has the form of f (x)
5const forx!1, and f (x);x222nc for x@1.

To test the scaling relation~13! and to determine the ex
ponenta, we plotted^R2(t)&/t2nc as a function oft/tc for a
set ofu values. Ata.22 the best data collapse is obtaine
and is shown in Fig. 4. The excellent data collapse stron
supports the above scaling assumptions.

ce
ts

FIG. 5. The return probabilityP00(t) as a function of timet for
a set ofu values. These data are averages of 106 realizations.

FIG. 6. Scaling plots of the return probabilityP00(t) for a set of
u values. The data are taken from Fig. 5. The scaling expon
lc521 anda522.
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We also investigated the scaling behavior of the ret
probability P00(t), which is the probability of the walke
returning to the original site. For the CDRW the walker ca
not return to the origin (0,0) exactly, so we make a rule t
if the walker enters the area limited by (60.5,60.5), this
walker is regarded as that returning to the original site.
get accurate average value ofP00(t) we have used 106 real-
izations for eachu. For each simulation, 104 time steps are
taken.

Figure 5 plots the results ofP00(t) for severalu values. It
can be seen that for a small value ofu the behavior ofP00(t)
bears analogy with the case of purely RW, i.e.,P00(t);tlc

with lc521, and for largeu, P00(t) decays exponentially
Similar to Eq.~13!, a scaling expression is valid for the re
turn probabilityP00(t)

P00~ t !;tlcg~x!, ~14!

whereg(x) is a rapidly decaying scaling function with th
nts

ys

s.

in,

A.

.
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limit g(x)5const forx!1. However, the argument ofg(x)
should have the same form as that off (x) in Eq. ~13!,
namelyx5t/ua. Figure 6 shows the scaling plots ofP00(t)
for severalu values. It will be seen from this that the scalin
expression~14! is suitable forP00(t).

In summary, we present a method to investigate the
rected random walks in continuous space. Using the met
the average square end-to-end distance^R2(t)&;t2n is cal-
culated. The scaling behavior of present motions belongs
ymptotically to that of ballistic motions. For short time,
crossover from purely RW (n50.5) to ballistic motions (n
51.0) is observed. The scaling relation of the for
^R2(t)&;t f (t/u22) is obtained. Analogous scaling relatio
is also found for the return probabilityP00(t).
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